Just because you can doesn’t mean you should...

TypeStates for Increased Driver Correctness

Tyler Potyondy, Anthony Tarbinian, Leon Schuermann, Eric Mugnier, Adin Ackermann, Amit Levy, Pat Pannuto

PRINCETON
UNIVERSITY

Hello!

e PhD Student at UC San Diego

e Involved with Tock since 2023 (~2.5 years)

e My research centers around making
systems secure-by-default

(Last weekend in the Sierra’s!)

Rust will fix our problems!

Buffer overflows

Use-After-Free

Data Races

Uninitialized Accesses

Rust will fix our problems!

YUse-After+ree Device Protocol Bugs

FFI Bugs BateRaces

What is a device protocol violation?

When software issues commands to hardware
that violate the hardware specification

Low-level Driver Development

-

Specification /
reference manual

~

‘_ RMO0461
,l ltig.ougmented Reference manual

with sub-GHz radio solution

Introduction
This s to 1 elopers. It provides L on
how to use the STM32WLEx ma memory and pery

STM32WLEx MCUs with integrated sub-GHz radio operating in the 150 - 960 MHz ISM
band, belong to a family of microcontrollers with different memory sizes, packages and
pernipherals.

For ordering info ¥ ch al and electrical device istics, refer fo the
comesponding datasheets.

For information on tha Arm® Cortex®-M4 core, refer 1o the comesponding Arm® Technical
Reference Manuals available on http //infocenterarm.com.

STM32WLEx microcontrolers include ST state-of-the-art patented technology.

Related documents

o STM32WLESxx STM32WLE4xx datasheet (DS 13105)

For information on the device erata with respect fo the datashest and reference manual,
refer to the STM32WLESxx STM32WLEdxx erata sheet (ES0506).

nNRF52840

Product Specification
v10

Low-level Driver Development

a N

Specification /
reference manual

NORDIC'

Low-level Driver Development

4 N

Specification /
reference manual

Ao
Reference|
w

/

nRF52840

mpty(),

ANCES[0]

Low-level Driver Development

4 N

Specification /
reference manual

Ao
Reference|
w

/

nRF52840

What can go wrong here? :)

mpty(),

ANCES[0]

Low-level Driver Development

a)
DO

Specification /
reference manual

Challenging!

&y.. Retorance man

empty(),

pty ()

nRF52840

new_twi@

ANCES[0]

What can go wrong here? :)

Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.

Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.

L

Modern hardware may transition the hardware state without input from the
driver.

Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.

L

Modern hardware may transition the hardware state without input from the
driver.

@ may result in a buggy driver.

@ af worst, may cause systematic failures (e.g. hanging the system’s bus).
3

$%
Challenging !>

Q: Can we enforce, at compile time, that the implemented driver will
always comply with the developer’s hw mental model?

Verified! >

Q: Can we enforce, at compile time, that the implemented driver will
always comply with the developer’s hw mental model?

()

software driver adheres to hardware’s specification

Key Insight: Software talks to hardware through a
“narrow waist” — memory-mapped I/O

4)

Operating System

Timer Screen Radio
Driver Driver Driver
_ | | | J

(System Memory Bus J

Screen

ado | |

Timer]

We present a framework that statically
(compile-time) prevents device protocol violations

r

9

_

software driver adheres to hardware’s specification
i.e., only performs MMIO operations valid for the given hw state

~

J

Statically eliminate device protocol violations with
minimal-to-no overheads in runtime and code size.

TypeStates DSL

Outline

e Introducing device protocol violations
e How do we build drivers today?

e TypeState programming

e OQOur System

e Evaluation & Closing Thoughts

Let’s build a UART driver...

Data Write a byte to transmit. Bytes are placed in an
WriteOnly internal FIFO queue. The UART transmits whenever
76543210 queue is non-empty and pops entries once sent.
Byte
STATUS Read hardware status. Busy indicates when a
ReadOnl transmission is active. FULL indicates when the FIFO
eadOnly)))
S 6543210 transmit queue is full; DATA must not be written
=T when FulLL is asserted.
reserved |Z|2

(Hypothetical UART Hardware Specification)

Let’s build a UART driver...

Data Write a byte to transmit. Bytes are placed in an
WriteOnly internal FIFO queue. The UART transmits whenever
76543210 queue is non-empty and pops entries once sent.
Byte
STATUS Read hardware status. Busy indicates when a
ReadOnl transmission is active. FuLL indicates when the FIFO
eadOnly)))
S 6543210 transmit queue is full; DATA must not be written
=T when FulLL is asserted.
reserved |Z|2

(Hypothetical UART Hardware Specification)

Let’s build a UART driver...

Data Write a byte to transmit. Bytes are placed in an QueueNotFull
WriteOnly internal FIFO queue. The UART transmits whenever
76543210 queue is non-empty and pops entries once sent.
Byte

STATUS Read hardware status. Busy indicates when a

transmission is active. FULL indicates when the FIFO
ReadOnly . . :
65 439210 transmit queue is full; DATA must not be written

=T when FulLL is asserted.
reserved |Z|2
QueueFull

(Hypothetical UART Hardware Specification) (Developer Mental Model of HW Specification)

Let’s build a UART driver...

Data
WriteOnly

765432

Byte

StAaTUS
ReadOnly

765432

reserved

FuLL | =

Busy | ©

Write a byte to transmit. Bytes are placed in an

internal FIFO queue. The UART transmits whenever
queue is non-empty and pops entries once sent.

Read hardware status. Busy indicates when a
transmission is active. FuLL indicates when the FIFO
transmit queue is full; DATA must not be written
when FuLL is asserted.

(Hypothetical UART Hardware Specification)

l LY

3

)

QueueNotFull o
Q

2

Q

®

<

Queuefull D —

(Developer Mental Model of HW Specification)

Let’s build a UART driver...

Data
WriteOnly

765432

Byte

StAaTUS
ReadOnly

765432

reserved

FuLL | =

Busy | ©

Write a byte to transmit. Bytes are placed in an

internal FIFO queue. The UART transmits whenever

queue is non-empty and pops entries once sent.

Read hardware status. Busy indicates when a
transmission is active. FuLL indicates when the FIFO
transmit queue is full; DATA must not be written
when FuLL is asserted.

(Hypothetical UART Hardware Specification)

QueueNotFull

(hw transmits
& pops queue)

(ba4 biop 04 8411M)

Queuefull —

(Developer Mental Model of HW Specification)

’ L] L]
Let’s build a UART driver.. l
T
3
FD".
~
Data Write a byte to transmit. Bytes are placed in an QueueNotFull o
WriteOnly internal FIFO queue. The UART transmits whenever 8~
76543210 queue is non-empty and pops entries once sent. 3-
Byte =
(hw transmits 8
STATUS Read hardware status. Busy indicates when a & pops queue) Dok
ReadOnl transmission is active. FULL indicates when the FIFO
6 s 4 Z) transmit queue is full; DATA must not be written
when FulLL is asserted.
reserved |Z|2
Queuelull —
(Hypothetical UART Hardware Specification) (Developer Mental Model of HW Specification)

’ L] L]
Let’s build a UART driver.. l
T
3
FD".
~
Data Write a byte to transmit. Bytes are placed in an QueueReady o
WriteOnly internal FIFO queue. The UART transmits whenever 8~
76543210 queue is non-empty and pops entries once sent. 3-
Byte =
(hw transmits 8
STATUS Read hardware status. Busy indicates when a & pops queue) Dok
ReadOnl transmission is active. FULL indicates when the FIFO
6 s 4 Z) transmit queue is full; DATA must not be written
when FulLL is asserted.
reserved |Z|2
Queuelull —
(Hypothetical UART Hardware Specification) (Developer Mental Model of HW Specification)

Let’s build a UART driver...

" 3

3,

o

QueueReady o

Q

Q

Q

ﬁ

(hw transmits 8

& pops queue) N\
Queuefull i

(Developer Mental Model of HW Specification)

struct UartRegisters {
data: RegisterWO<u8>,
status: RegisterRO<StatusReg>
(/o canascaihellipersforibitfields

(&

fn transmit(reg: &UartRegisters, buf: &[u8]) {
for index in len(buf):
reg.data.write(buf[index])
// busy wait until queue has space
while (reg.status.read().is_set(StatusReg::FULL) {}

O 0 NN R W N =

—_
(=}

1 3}

(Implemented UART driver - based on our mental model)

Let’s build a UART driver...

" 3

3,

)

QueueReady o

Q

Q

Q

ﬁ

(hw transmits 8

& pops queue) N\
QueueFull i

(Developer Mental Model of HW Specification)

struct UartRegisters {
data: RegisterWO<u8>,
status: RegisterRO<StatusReg>
(/o canascaihellipersforibitfields

(]

fn transmit(reg: &UartRegisters, buf: &[u8]) {
for index in len(buf):
reg.data.write(buf[index])
// busy wait until queue has space
while (reg.status.read().is_set(StatusReg::FULL) {}

O 0 NN R W N =

—_
(=}

1 3}

(Implemented UART driver - based on our mental model)

Do you see the bug?

Let’s build a UART driver...

Recall...

DATA must not be written
when FULL is asserted.

1 struct UartRegisters {

2 data: RegisterWO<u8>,

3 status: RegisterRO<StatusReg>

4 3} (/o canascaihellipersforibitfields

5

6 fn transmit(reg: &UartRegisters, buf: &[u8]) {

7 for index in len(buf):

8 reg.data.write(buf[index])

9 // busy wait until queue has space

10 while (reg.status.read().is_set(StatusReg::FULL) {}
1 3}

(Implemented UART driver - based on our mental model)

Do you see the bug?

Let’s build a UART driver...

Violate device protocol!

We assume that the hw transmit queue is
NOT full when calling this function

Recall..

DATA must not be written
when FULL is asserted.

—

1 struct UartRegisters {
data: RegisterWO<u8>,
status: RegisterRO<StatusReg>
} (/o canascaihellipersforibitfields

fn transmit(reg: &UartRegisters, buf: &[u8]) {
for index in len(buf):
reg.data.write(buf[index])
// busy wait until queue has space
10 while (reg.status.read().is_set(StatusReg::FULL) {}

1 3}

2
3
4
5
6
7
8
9

(Implemented UART driver - based on our mental model)

Do you see the bug?

How might we prevent this bug?

Standard approaches for enforcing system properties (generally)...

Testing

(only proves the absence of tested bugs).

Formal Verification

(challenging; requires domain specific expertise).

10

How might we prevent this bug?

Standard approaches for enforcing system properties (generally)...

Testing

(only proves the absence of tested bugs).

TypeState Programming

Formal Verification

(challenging; requires domain specific expertise).

10

Outline

e Introducing device protocol violations
e How do we build drivers today?

e TypeState programming

e OQOur System

e Evaluation & Closing Thoughts

A TypeStated Queue

struct Full {} // 3 items in queue
struct Two {} // 2 items 1in queue
struct One {} // 1 item in queue
struct Empty {} // @ items in queue

—

struct Queue<S: State> {
queue: [u8; 3]
5

0 N R W N =

Encode system properties into
the type-system.

(Using typestates to statically enforce a correct implementation for a queue of size 3)

11

A TypeStated Queue

e Encode system properties into
the type-system.

e Define valid operations as
functions on respective type.

—

(Using typestates to statically enforce a correct implementation for a queue of size 3)

O 00 NN U R W N =

_ e
N o= O

13

struct Full {} // 3 items in queue
struct Two {} // 2 items in queue
struct One {} // 1 item in queue
struct Empty {} // @ items in queue

struct Queue<S: State> {
queue: [u8; 3]
i}

impl Queue<Empty> {
fn push(self) -> Queue<One>

}

impl Queue<One> {
fn push(self) -> Queue<Two>
fn pop(self) -> Queue<Empty>
}

// similar form to Queue<One>
impl Queue<Two> { ... }

impl Queue<Full> {
fn pop(self) -> Queue<Two>

3

A TypeStated Queue

e Encode system properties into
the type-system.

e Define valid operations as
functions on respective type.

e Incorrect usages result in a
compilation error!

(Using typestates to statically enforce a correct implementation for a queue of size 3)

—

O 00 NN U R W N =

_ e
N o= O

13

struct Full {} // 3 items in queue
struct Two {} // 2 items in queue
struct One {} // 1 item in queue
struct Empty {} // @ items in queue

struct Queue<S: State> {
queue: [u8; 3]
i}

impl Queue<Empty> {
fn push(self) -> Queue<One>

}

impl Queue<One> {
fn push(self) -> Queue<Two>
fn pop(self) -> Queue<Empty>
}

// similar form to Queue<One>
impl Queue<Two> { ... }

impl Queue<Full> {
fn pop(self) -> Queue<Two>

3

A TypeStated Queue

Recall from hw spec..

Out-of-the-box typestates cannot

(Using typestates to statically enforce a correct
implementation for a queue of size 3)

The UART transmits whenever queue is
non-empty and pops entries once sent.

model this state transition!

O 00 NN N R W =

[NS o R N R S R N e e e e T - T S S = S)
BW N = O 0 Nl W N = O

struct Full {} // 3 items in queue
struct Two {} // 2 items in queue
struct One {} // 1 item in queue
struct Empty {} // @ items in queue

struct Queue<S: State> {
queue: [u8; 3]
}

impl Queue<Empty> {
fn push(self) -> Queue<One>

b

impl Queue<One> {
fn push(self) -> Queue<Two>
fn pop(self) -> Queue<Empty>
}

// similar form to Queue<One>
impl Queue<Two> { ... }

impl Queue<Full> {
fn pop(self) -> Queue<Two>

b

12

Outline

e Introducing device protocol violations
e How do we build drivers today?

e TypeState programming

e Our System

e Evaluation & Closing Thoughts

We present a framework that statically (at compile
time) prevents device protocol violations

e Achieve device protocol enforcement with minimal to no overheads in
runtime and code size.

TypeStates DSL

e Primary contribution: Introduce a refinement to type-states and principled
approach to model hardware-software concurrency using type-states.

13

We observe... there are two classes
of hw state transitions

QueueReady

(baJ bibp Of 841uM)

(hw transmits
& pops queue)

QueueFull —

(Developer Mental Model of HW Specification)

14

We observe... there are two classes
of hw state transitions OueueReady

e Software-initiated

(ba.u pbipop 04 841iM)

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

T
We observe... there are two classes 3,
o o (D
of hw state transitions OueueReady 3
.. Q
e Software-initiated 2
o« e Q
e Hardware-initiated A 3
& pops queue) T L\%

QueueFull

(Developer Mental Model of HW Specification)

We observe... there are two classes
of hw state transitions

e Software-initiated
e Hardware-initiated

o _/

/Cafegorize hardware states into)
two mutually exclusive families

e fransient state
e stable state

o _/

QueueReady

(ba.u pbipop 04 841iM)

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

14

Stable State

Hw state that can only be exited with a
software-initiated state transition.

QueueReady

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

15

(hw transmits
& pops queue)

(baJ bibp Of 841uM)

QueuefFull R —

(Developer Mental Model of HW Specification)

15

(hw transmits
& pops queue)

(baJ bibp Of 841uM)

QueuefFull R —

(Developer Mental Model of HW Specification)

15

(hw transmits
& pops queue)

(baJ bibp Of 841uM)

(Developer Mental Model of HW Specification)

15

e Stable states can be modeled with
out-of-the-box typestates.

(hw transmits
& pops queue)

(baJ bibp Of 841uM)

(Developer Mental Model of HW Specification)

16

e Stable states can be modeled with
out-of-the-box typestates.

e Transient states cause typestates
to no longer accurately model hw
(violate static invariance).

QueueReady

(ba.u pbipop 04 841iM)

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

16

e Stable states can be modeled with
out-of-the-box typestates.

e Transient states cause typestates
to no longer accurately model hw
(violate static invariance).

Typestates + restrict transient state
operations & re-synchronization mechanism

QueueReady

(ba.u pbipop 04 841iM)

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

16

e Transient states cause typestates
to no longer accurately model hw

(violate static invariance).

operations & re-synchronization mechanism

+ restrict transient state

Careful: Transient states have
potential for TOCTOU bugs!

QueueReady

(hw transmits
& pops queue)

QueueFull

(Developer Mental Model of HW Specification)

16

(Recall) Key Insight: Software talks to hardware through

a “narrow waist” — memory-mapped I/O

Vs

Operating System

Timer Screen Radio
Driver Driver Driver
_ | | |
| | |
I
(System Memory Bus
|
| |
Timer] Screen Radio] [

17

+#[(states=[QueueReady<Idle>,
4 QueueReady<Busy>(*Tx),
& QueueMaybeFull (xTx) i3

struct UartRegisters {

+ #[attribute(SC(QueueReady<Any>, QueueMaybeFull))]
data: WriteOnly<u8, Data::Register>,
// No attributes are required for ‘Status"
status: ReadOnly<u8, Status::Register>,

+ #[attribute(SC(Any, QueueReady<Idle>))]

10 flush: WriteOnly<u8, Flush::Register>,

11 + #[attribute(QueueReady<Idle>)]

12 config: ReadWrite<u8m Config::Register>,

13}

O 00 N N U W N =

Annotations for updated UART driver

Enforce device protocols by constraining MMIO using type-states.
18

+#[(states=[QueueReady<Idle>,
4 QueueReady<Busy>(*Tx),
& QueueMaybeFull (xTx) i3

1. Label states and mark

fransient states struct UartRegisters {

+ #[attribute(SC(QueueReady<Any>, QueueMaybeFull))]
data: WriteOnly<u8, Data::Register>,
// No attributes are required for ‘Status"
status: ReadOnly<u8, Status::Register>,

+ #[attribute(SC(Any, QueueReady<Idle>))]
flush: WriteOnly<u8, Flush::Register>,

+ #[attribute(QueueReady<Idle>)]
config: ReadWrite<u8m Config::Register>,

O 00 N N U W N =

e T =
w N =R O

}

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.
18

+#[(states=[QueueReady<Idle>,
1. Label states and mark i QueueReagy-Busyr(<T2),
+ QueueMaybeFull (*T*) DN

transient states struct UartRegisters {

+ #[attribute(SC(QueueReady<Any>, QueueMaybeFull))]

2. Add constraints to data: WriteOnly<u8, Data::Register>,

/7 No attributes are required for “Status
status: ReadOnly<u8, Status::Register>,

+ #[attribute(SC(Any, QueueReady<Idle>))]
flush: WriteOnly<u8, Flush::Register>,

registers

O 00 N N U W N =

—
(=}

—
—
-+

#[attribute(QueueReady<Idle>)]
config: ReadWrite<u8m Config::Register>,

(o=
Do

—
w
-

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.
18

+#[(states=[QueueReady<Idle>,
1. Label states and mark i QueueReagy-Busyr(<T2),
+ QueueMaybeFull (*T*) DN

transient states struct UartRegisters {

+ #[attribute(SC(QueueReady<Any>, QueueMaybeFull))]

2. Add consTrainTs to data: WriteOnly<u8, Data::Register>,

// No attributes are required for ‘Status"

registers
status: ReadOnly<u8, Status::Register>,

O 00 N N o W N =

+ #[attribute(SC(Any, QueueReady<Idle>))]
flush: WriteOnly<u8, Flush::Register>,
#[attribute(QueueReady<Idle>)]

config: ReadWrite<u8m Config::Register>,

e T =
w N =R O
- +

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.
18

// Hardware object made generic over device state.
struct UartRegisters<S: State> {

data: SCRegisterWO<S, u8>,

status: ReadOnly<u8, Status>,

reset: SCRegisterWO<S, u8>,

config: RWRegister<N, S, u8>,

DSL / proc-macro
autogenerates type-states

3

O 00 9 Uk W

// Wrapper around state changing registers.
struct SCRegisterW0<S: State, T> {

reg: WriteOnly<T>,

associated_state: PhantomData<S>,

P e e
W N = O

b

—
(2 BN

// Wrapper around constrained MMIO.
struct RWRegister<N, S: State, T> {

—
(=)}

17 reg: ReadWrite<T>,

18 associated_name: PhantomData<N>,

19 associated_state: PhantomData<S>,

20 }

21

22 // This impl is only generated for S==QueueReady<Idle>,

oo
w

// which enforces config's device protocol invariants.
impl <T> RWRegister<Config, QueueReady<Idle>, T> {
fn read(&self) -> T {..}
fn write(&self, T) {..}

NN NN
A G s

19

Do
~3
ol

// Hardware object made generic over device state.

struct UartRegisters<S: State> {
data: SCRegisterWO<S, u8>,
status: ReadOnly<u8, Status>,
reset: SCRegisterWO<S, u8>,
config: RWRegister<N, S, u8>,

DSL / proc-macro
autogenerates type-states

3

O | N s W N

// Wrapper around state changing registers.
struct SCRegisterW0<S: State, T> {

reg: WriteOnly<T>,

associated_state: PhantomData<S>,

—
o

1. Modified MMIO register struct

—_ =
W NN =

b

—
(2 BN

// Wrapper around constrained MMIO.
struct RWRegister<N, S: State, T> {

—
(=)}

17 reg: ReadWrite<T>,

18 associated_name: PhantomData<N>,

19 associated_state: PhantomData<S>,

20 }

21

22 // This impl is only generated for S==QueueReady<Idle>,

oo
w

// which enforces config's device protocol invariants.
impl <T> RWRegister<Config, QueueReady<Idle>, T> {
fn read(&self) -> T {..}
fn write(&self, T) {..}

NN NN
A G s

19

Do
~3
ol

// Hardware object made generic over device state.
struct UartRegisters<S: State> {
data: SCRegisterWO<S, u8>,

DSL / prOC'mCICI'O | status: ReadOnly<u8, Status>,

reset: SCRegisterWO<S, u8>,

qutogenerqtes type-stcﬂes
config: RWRegister<N, S, u8>,

3

O 00 N O bR W DN =

// Wrapper around state changing registers.
struct SCRegisterW0<S: State, T> {

reg: WriteOnly<T>,

associated_state: PhantomData<S>,

—
o

1. Modified MMIO register struct

—_ =
W NN =

b

—
(2 BN

// Wrapper around constrained MMIO.
struct RWRegister<N, S: State, T> {

—
(=)}

17 reg: ReadWrite<T>,

18 associated_name: PhantomData<N>,

19 associated_state: PhantomData<S>,

20 }

21

22 // This impl is only generated for S==QueueReady<Idle>,

oo
w

// which enforces config's device protocol invariants.
impl <T> RWRegister<Config, QueueReady<Idle>, T> {
fn read(&self) -> T {..}
fn write(&self, T) {..}

NN NN
A G s

19

Do
~3
ol

// Hardware object made generic over device state.
struct UartRegisters<S: State> {

data: SCRegisterWO<S, u8>,

status: ReadOnly<u8, Status>,

reset: SCRegisterWO<S, u8>,

config: RWRegister<N, S, u8>,
}

DSL / proc-macro
autogenerates type-states

O |00 1 O U B W

// Wrapper around state changing registers.

. g . struct SCRegisterW0<S: State, T> {
1. Modified MMIO register struct || g Writeonly<T>,

12 associated_state: PhantomData<S>,

2. Wrap tock registers in type-state [})

o

15 // Wrapper around constrained MMIO.
16 struct RWRegister<N, S: State, T> {
17 reg: ReadWrite<T>,

18 associated_name: PhantomData<N>,
19 associated_state: PhantomData<S>,
20 }

22 // This impl is only generated for S==QueueReady<Idle>,
23 // which enforces config's device protocol invariants.
24 impl <T> RWRegister<Config, QueueReady<Idle>, T> {

25 fn read(&self) -> T {..}

26 fn write(&self, T) {..} 19

// Hardware object made generic over device state.
struct UartRegisters<S: State> {

data: SCRegisterWO<S, u8>,

status: ReadOnly<u8, Status>,

reset: SCRegisterWO<S, u8>,

config: RWRegister<N, S, u8>,
}

DSL / proc-macro
autogenerates type-states

O 00 N N Uk W N

// Wrapper around state changing registers.
struct SCRegisterW0<S: State, T> {

reg: WriteOnly<T>,

associated_state: PhantomData<S>,

b

—
o

1. Modified MMIO register struct

e, s
N =

2. Wrap tock registers in type-state

—_—
= W

3. Only define valid transitions

—_
w

// Wrapper around constrained MMIO.

struct RWRegister<N, S: State, T> {
reg: ReadWrite<T>,
associated_name: PhantomData<N>,
associated_state: PhantomData<S>,

3

N DN = = =
= O OV 00 g &

[*]
[\

// This impl is only generated for S==QueueReady<Idle>,
// which enforces config's device protocol invariants.
impl <T> RWRegister<Config, QueueReady<Idle>, T> {

fn read(&self) -> T {..}

fn write(&self, T) {..}

N DN DN
gl s W

Do
N

Do
~3
]

1 // Driver object holds hardware reference & driver-specific state
o 2 struct UartDriver
Upddfed transmit 3 - registers: &Uartr{(egisters,
4 + registers: MMIOCell<UartStates>,
50}
6 impl UartDriver {
7 pub fn transmit(&self, buf: &[u8]) {
8 for data in buf.iter() {
9 - self.registers.data.write(data);
100 & while self.registers.status.is_set(Status::FULL) {};
11 self.registers.map(|state| {
12 match state {
13 UartStates: :QueueReadyIdle(regs) => {
14 regs.data.write(data).sync_state()
15 }

UartStates: :QueueReadyBusy(regs) => {
regs.data.write(data).sync_state()

1
UartStates: :QueueMaybeFull(regs) => {
regs.sync_state() /* no regs.data.write() exists */

13

D) = b
S O 0 NN
+ + + + + + 4+ + + + +

NI S
N =

dk

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!
20

1 // Driver object holds hardware reference & driver-specific state
o 2 struct UartDriver
Upddfed transmit 3 - registers: &Uartr{(egisters,
4 + registers: MMIOCell<UartStates>,
5 3
6 impl UartDriver {
7 pub fn transmit(&self, buf: &[u8]) {
8 for data in buf.iter() {
9 - self.registers.data.write(data);
100 & while self.registers.status.is_set(Status::FULL) {};
11 self.registers.map(|state| {
12 match state {
13 UartStates: :QueueReadyIdle(regs) => {
14 regs.data.write(data).sync_state()
15 }

UartStates: :QueueReadyBusy(regs) => {
regs.data.write(data).sync_state()

1
UartStates: :QueueMaybeFull(regs) => {
regs.sync_state() /* no regs.data.write() exists */

13

D) = b
S O 0 NN
+ + + + + + 4+ + + + +

NI S
N =

dk

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!
20

1 // Driver object holds hardware reference & driver-specific state
o 2 struct UartDriver
Upddfed transmit 3 - registers: &Uartr{(egisters,
4 + registers: MMIOCell<UartStates>,
5 %
6 impl UartDriver {
7 pub fn transmit(&self, buf: &[u8]) {
8 for data in buf.iter() {
9 - self.registers.data.write(data);
100 & while self.registers.status.is_set(Status::FULL) {};
11 self.registers.map(|state| {
12 match state {
13 UartStates: :QueueReadyIdle(regs) => {
14 regs.data.write(data).sync_state()
15 }

UartStates: :QueueReadyBusy(regs) => {
regs.data.write(data).sync_state()

1
UartStates: :QueueMaybeFull(regs) => {
regs.sync_state() /* no regs.data.write() exists */

13

D) = b
S O 0 NN
+ + + + + + 4+ + + + +

NI S
N =

dk

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!
20

1 // Driver object holds hardware reference & driver-specific state
o 2 struct UartDriver
Upddfed transmit 3 - registers: &Uartr{(egisters,
4 + registers: MMIOCell<UartStates>,
50}
6 impl UartDriver {
7 pub fn transmit(&self, buf: &[u8]) {
8 for data in buf.iter() {
9 - self.registers.data.write(data);
100 & while self.registers.status.is_set(Status::FULL) {};
11 self.registers.map(|state| {
12 match state {
13 UartStates: :QueueReadyIdle(regs) => {
14 regs.data.write(data).sync_state()
15 }

UartStates: :QueueReadyBusy(regs) => {
regs.data.write(data).sync_state()

i
UartStates: :QueueMaybeFull(regs) => {

[
O o0 3

[\
(=]

regs.sync_state() /* no regs.data.write() exists 1

ok
(*)}
+ [+ + + + + + + + + +

Do
—

13

[N
\S]

dk

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

20

Outline

e Introducing device protocol violations
e How do we build drivers today?

e TypeState programming

e OQOur System

e Evaluation & Closing Thoughts

Implementation with TockOS

| &

ne
/.

Cck

UARTE

Temp.

Radio

NORDIC"

SEMICONDUCTOR

USART

RNG

Lys

life.augmented

21

What’s the catch...

e Code size?
e Developer effort?
e Runtime performance?

22

Driver Platform Binary Size (B) Diff (B) Percent Diff

Baseline Nrf52840 218594 - —

UART Nrf52840 218594 +0 0.00%
Temperature Sensor ~ Nrf52840 218594 +0 0.00%
IEEE 802.15.4 Radio Nrf52840 218602 +8 0.00%
Baseline STM 107482 - -

TRNG STM 107490 +8 0.00%
UART STM 107490 +8 0.00%

Code size of total kernel binary image for a baseline kernel image and kernel
integrating our system into drivers.

Our system adds no code size overhead!

Our system adds negligible
runtime overheads.

BN STM USART 3 Nordic Radio 1 STMTRNG CZA Our System
[Nordic UART [Nordic Temperature [Baseline

36k

32k A

28k

24k

20k

16k

12k

Performance (in CPU cycles)

8k

4k

0Ok -

Kernel Functionality

MacroBenchmark Performance (in CPU cycles).

24

Driver States Original LoC

Annotations Integration
nRF52 UARTE 5 526 43 (+) 492 (+) 110 (-)
nRF5x Temperature 2 151 4 (+) 53 (+) 17 (-)
nRF52 15.4 Radio 8 1352 33 (+) 518 (+) 157 (-)
STM USART 5 743 45 (+) 351 (+) 79 (-)
STM TRNG 2 159 13 (+) 69 (+) 25 (-)
xHCI PortSC 5 6748 14 (+) 330 (+) 194 (-)

Our system adds some developer overheads

(improving the usability is ongoing!)

25

Case Study - NRF52 IEEE802.15.4 Driver

THREAD

July 2023

26

Case Study - NRF52 IEEE802.15.4 Driver

T0:ck Add SW ACKs to
OPENTHREAD radio driver
July 2023 August 2023

3 possible HW “shortcuts” to enable faster radio TX

26

Case Study - NRF52 IEEE802.15.4 Driver

10:ck Add SW ACKs to
OPENTHREAD radio driver
July 2023 August 2023

3 possible HW “shortcuts” to enable faster radio TX

Unable to get all 3 working (~2 weeks of development)

26

Case Study - NRF52 IEEE802.15.4 Driver

L[GH S Add SW ACKs to Integrate our
radio driver system into 15.4
THREAD driver
July 2023 August 2023 March 2025

Unable to get all 3 shortcuts working (~2 weeks of development)

26

Case Study - NRF52 IEEE802.15.4 Driver

T0:ck Add SW ACKs to Integréte our
radio driver system into 15.4
THREAD oo
July 2023 August 2023 March 2025

Unable to get all 3 shortcuts working (~2 weeks of development)

e Updated our state machine in DSL to use all 3 TX HW shortcuts

26

Case Study - NRF52 IEEE802.15.4 Driver

T ‘:Ck Add SW ACKs to Iﬁtegréte our
radio driver system into 15.4
OPENTH-RE‘VA,D e
July 2023 August 2023 March 2025

Unable to get all 3 shortcuts working (~2 weeks of development)

e Updated our state machine in DSL to use all 3 TX HW shortcuts

e Compiler identifies sections of driver that must be updated (errors)

26

Case Study - NRF52 IEEE802.15.4 Driver

T ‘:Ck Add SW ACKs to Integréte our
radio driver system into 15.4
OPENTI-I-REMA;D e
July 2023 August 2023 March 2025

Unable to get all 3 shortcuts working (~2 weeks of development)

e Updated our state machine in DSL to use all 3 TX HW shortcuts

e Compiler identifies sections of driver that must be updated (errors)

Updated and working driver in ~2 hours!

26

Case Study - NRF52 IEEE802.15.4 Driver

T :Ck Add SW ACKs to Integréte our
radio driver system into 15.4
OPENTHREZD driver
July 2023 August 2023 March 2025

Unable to get all 3 shortcuts working (~2 weeks of development)

e Updated our state machine in DSL to use all 3 TX HW shortcuts

e Compiler identifies sections of driver that must be updated (errors)

Updated and working driver in ~2 hours!

50% decrease in driver interrupts; 8% runtime improvement

26

Our system statically prevents device protocol
violations using typestates.

Imposes minimal to no code size and runtime overheads.

27

Crate coming soon!

(will be a counterpart to tock-registers)

