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Hello!

● PhD Student at UC San Diego

● Involved with Tock since 2023 (~2.5 years)

● My research centers around making 
systems secure-by-default

(Last weekend in the Sierra’s!)
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What is a device protocol violation?
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When software issues commands to hardware 
that violate the hardware specification
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Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.
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Modern hardware may transition the hardware state without input from the 
driver.  

○ may result in a buggy driver.
○ at worst, may cause systematic failures (e.g. hanging the system’s bus).



Challenging!

Q: Can we enforce, at compile time, that the implemented driver will 
always comply with the developer’s hw mental model? 
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Q: Can we enforce, at compile time, that the implemented driver will 
always comply with the developer’s hw mental model? 

software driver adheres to hardware’s specification
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Verified!



Key Insight: Software talks to hardware through a 
“narrow waist” — memory-mapped I/O

Operating System

Timer Screen Radio …

Timer
Driver

Screen
Driver

Radio
Driver

System Memory Bus
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We present a framework that statically 
(compile-time) prevents device protocol violations
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● software driver adheres to hardware’s specification
● i.e., only performs MMIO operations valid for the given hw state



Statically eliminate device protocol violations with 
minimal-to-no overheads in runtime and code size.
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TypeStates DSL



Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts
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Do you see the bug? 



Let’s build a UART driver…

(Implemented UART driver – based on our mental model)

Do you see the bug? DATA must not be written 
when FULL is asserted.

Recall…
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Let’s build a UART driver…

Do you see the bug? DATA must not be written 
when FULL is asserted.

Recall…

We assume that the hw transmit queue is 
NOT full when calling this function

(Implemented UART driver – based on our mental model)

Violate device protocol!
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Standard approaches for enforcing system properties (generally)…

How might we prevent this bug?

10

Testing
 (only proves the absence of tested bugs).

Formal Verification
(challenging; requires domain specific expertise).
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Testing
 (only proves the absence of tested bugs).

Formal Verification
(challenging; requires domain specific expertise).

TypeState Programming
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(Using typestates to statically enforce a correct implementation for a queue of size 3)
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A TypeStated Queue

● Encode system properties into 
the type-system.

● Define valid operations as 
functions on respective type.

● Incorrect usages result in a 
compilation error!

(Using typestates to statically enforce a correct implementation for a queue of size 3)
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A TypeStated Queue

(Using typestates to statically enforce a correct 
implementation for a queue of size 3)
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The UART transmits whenever queue is 
non-empty and pops entries once sent.

Recall from hw spec…

Out-of-the-box typestates cannot 
model this state transition!
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We present a framework that statically (at compile 
time) prevents device protocol violations 
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● Achieve device protocol enforcement with minimal to no overheads in 
runtime and code size.

TypeStates DSL

● Primary contribution: Introduce a refinement to type-states and principled 
approach to model hardware-software concurrency using type-states.
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QueueReady

QueueFull
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(Developer Mental Model of HW Specification)

We observe… there are two classes 
of hw state transitions
● Software-initiated
● Hardware-initiated 

Categorize hardware states into 
two mutually exclusive families
● transient state
● stable state
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QueueReady

QueueFull

(w
rite to data reg)(hw transmits 

& pops queue)

(Developer Mental Model of HW Specification)

● Stable states can be modeled with 
out-of-the-box typestates.

● Transient states cause typestates 
to no longer accurately model hw 
(violate static invariance).

Careful: Transient states have 
potential for TOCTOU bugs!

Typestates + restrict transient state 
operations & re-synchronization mechanism



(Recall) Key Insight: Software talks to hardware through 
a “narrow waist” — memory-mapped I/O

Operating System

Timer Screen Radio …

Timer
Driver

Screen
Driver

Radio
Driver

System Memory Bus
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Annotations for updated UART driver

Enforce device protocols by constraining MMIO using type-states.
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DSL / proc-macro 
autogenerates type-states

1. Modified MMIO register struct

2. Wrap tock registers in type-state

3. Only define valid transitions 



No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

Updated transmit
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Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts



Implementation with TockOS
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UARTE Temp. Radio USART RNG
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What’s the catch…

● Code size?
● Developer effort?
● Runtime performance?



Our system adds no code size overhead!
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Code size of total kernel binary image for a baseline kernel image and kernel 
integrating our system into drivers.



MacroBenchmark Performance (in CPU cycles).

Our system adds negligible 
runtime overheads.
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Our system adds some developer overheads
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(improving the usability is ongoing!) 



Case Study – NRF52 IEEE802.15.4 Driver
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Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to 
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our 
system into 15.4 

driver

● Updated our state machine in DSL to use all 3 TX HW shortcuts

● Compiler identifies sections of driver that must be updated (errors)

Updated and working driver in ~2 hours!

50% decrease in driver interrupts; 8% runtime improvement
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Our system statically prevents device protocol 
violations using typestates.

Imposes minimal to no code size and runtime overheads.
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Crate coming soon!
(will be a counterpart to tock-registers)




