
Just because you can doesn’t mean you should…

TypeStates for Increased Driver Correctness
Tyler Potyondy, Anthony Tarbinian, Leon Schuermann, Eric Mugnier, Adin Ackermann, Amit Levy, Pat Pannuto

Hello!

● PhD Student at UC San Diego

● Involved with Tock since 2023 (~2.5 years)

● My research centers around making
systems secure-by-default

(Last weekend in the Sierra’s!)

Rust will fix our problems!

1

Buffer overflows

Use-After-Free

Data Races

Uninitialized Accesses

Rust will fix our problems!

1

Buffer overflows

Use-After-Free

Data Races

Uninitialized Accesses

FFI Bugs

Device Protocol Bugs

What is a device protocol violation?

1

When software issues commands to hardware
that violate the hardware specification

Low-level Driver Development

Specification /
reference manual

2

Low-level Driver Development

Specification /
reference manual

2

Specification /
reference manual

Low-level Driver Development

2

Specification /
reference manual

Low-level Driver Development

2

What can go wrong here? :)

Specification /
reference manual

Low-level Driver Development

2

What can go wrong here? :)

Challenging!

Challenging!

Validity of a given MMIO operation depends on the current hardware state.

3

Why is this challenging?

Challenging!

Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.

3

Modern hardware may transition the hardware state without input from the
driver.

Challenging!

Why is this challenging?

Validity of a given MMIO operation depends on the current hardware state.

3

Modern hardware may transition the hardware state without input from the
driver.

○ may result in a buggy driver.
○ at worst, may cause systematic failures (e.g. hanging the system’s bus).

Challenging!

Q: Can we enforce, at compile time, that the implemented driver will
always comply with the developer’s hw mental model?

4

Q: Can we enforce, at compile time, that the implemented driver will
always comply with the developer’s hw mental model?

software driver adheres to hardware’s specification

4

Verified!

Key Insight: Software talks to hardware through a
“narrow waist” — memory-mapped I/O

Operating System

Timer Screen Radio …

Timer
Driver

Screen
Driver

Radio
Driver

System Memory Bus

5

We present a framework that statically
(compile-time) prevents device protocol violations

6

● software driver adheres to hardware’s specification
● i.e., only performs MMIO operations valid for the given hw state

Statically eliminate device protocol violations with
minimal-to-no overheads in runtime and code size.

7

TypeStates DSL

Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

QueueNotFull

QueueFull

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

QueueNotFull

QueueFull

(w
rite to data reg)

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

QueueNotFull

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

QueueNotFull

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Hypothetical UART Hardware Specification)

8

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Implemented UART driver – based on our mental model)

9

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Let’s build a UART driver…

(Implemented UART driver – based on our mental model)

9

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Do you see the bug?

Let’s build a UART driver…

(Implemented UART driver – based on our mental model)

Do you see the bug? DATA must not be written
when FULL is asserted.

Recall…

9

Let’s build a UART driver…

Do you see the bug? DATA must not be written
when FULL is asserted.

Recall…

We assume that the hw transmit queue is
NOT full when calling this function

(Implemented UART driver – based on our mental model)

Violate device protocol!

9

Standard approaches for enforcing system properties (generally)…

How might we prevent this bug?

10

Testing
 (only proves the absence of tested bugs).

Formal Verification
(challenging; requires domain specific expertise).

Standard approaches for enforcing system properties (generally)…

How might we prevent this bug?

10

Testing
 (only proves the absence of tested bugs).

Formal Verification
(challenging; requires domain specific expertise).

TypeState Programming

Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts

A TypeStated Queue

(Using typestates to statically enforce a correct implementation for a queue of size 3)
11

● Encode system properties into
the type-system.

A TypeStated Queue

● Encode system properties into
the type-system.

● Define valid operations as
functions on respective type.

(Using typestates to statically enforce a correct implementation for a queue of size 3)
11

A TypeStated Queue

● Encode system properties into
the type-system.

● Define valid operations as
functions on respective type.

● Incorrect usages result in a
compilation error!

(Using typestates to statically enforce a correct implementation for a queue of size 3)
11

A TypeStated Queue

(Using typestates to statically enforce a correct
implementation for a queue of size 3)

12

The UART transmits whenever queue is
non-empty and pops entries once sent.

Recall from hw spec…

Out-of-the-box typestates cannot
model this state transition!

Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts

We present a framework that statically (at compile
time) prevents device protocol violations

13

● Achieve device protocol enforcement with minimal to no overheads in
runtime and code size.

TypeStates DSL

● Primary contribution: Introduce a refinement to type-states and principled
approach to model hardware-software concurrency using type-states.

14

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

We observe… there are two classes
of hw state transitions

14

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

We observe… there are two classes
of hw state transitions
● Software-initiated

14

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

We observe… there are two classes
of hw state transitions
● Software-initiated
● Hardware-initiated

14

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

We observe… there are two classes
of hw state transitions
● Software-initiated
● Hardware-initiated

Categorize hardware states into
two mutually exclusive families
● transient state
● stable state

15

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Stable State
● Hw state that can only be exited with a

software-initiated state transition.

15

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Stable State
● Hw state that can only be exited with a

software-initiated state transition.

15

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Transient State
● Hw state with at least one hw-initiated

state transition.
● Transition from transient state without

explicit software involvement.

Stable State
● Hw state that can only be exited with a

software-initiated state transition.

15

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

Stable State
● Hw state that can only be exited with a

software-initiated state transition.

Transient State
● Hw state with at least one hw-initiated

state transition.
● Transition from transient state without

explicit software involvement.

16

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

● Stable states can be modeled with
out-of-the-box typestates.

16

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

● Stable states can be modeled with
out-of-the-box typestates.

● Transient states cause typestates
to no longer accurately model hw
(violate static invariance).

16

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

● Stable states can be modeled with
out-of-the-box typestates.

● Transient states cause typestates
to no longer accurately model hw
(violate static invariance).

Typestates + restrict transient state
operations & re-synchronization mechanism

16

QueueReady

QueueFull

(w
rite to data reg)(hw transmits

& pops queue)

(Developer Mental Model of HW Specification)

● Stable states can be modeled with
out-of-the-box typestates.

● Transient states cause typestates
to no longer accurately model hw
(violate static invariance).

Careful: Transient states have
potential for TOCTOU bugs!

Typestates + restrict transient state
operations & re-synchronization mechanism

(Recall) Key Insight: Software talks to hardware through
a “narrow waist” — memory-mapped I/O

Operating System

Timer Screen Radio …

Timer
Driver

Screen
Driver

Radio
Driver

System Memory Bus

17

Annotations for updated UART driver

Enforce device protocols by constraining MMIO using type-states.
18

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.

1. Label states and mark
transient states

18

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.

1. Label states and mark
transient states

2. Add constraints to
registers

18

Annotations for updated UART driver.

Enforce device protocols by constraining MMIO using type-states.

1. Label states and mark
transient states

2. Add constraints to
registers

18

DSL / proc-macro
autogenerates type-states

19

DSL / proc-macro
autogenerates type-states

1. Modified MMIO register struct

19

DSL / proc-macro
autogenerates type-states

1. Modified MMIO register struct

19

DSL / proc-macro
autogenerates type-states

1. Modified MMIO register struct

2. Wrap tock registers in type-state

19

DSL / proc-macro
autogenerates type-states

1. Modified MMIO register struct

2. Wrap tock registers in type-state

3. Only define valid transitions

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

Updated transmit

20

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

Updated transmit

20

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

Updated transmit

20

No longer possible for the transmit method to attempt to write DATA when the queue is possibly full!

Updated transmit

20

Outline

● Introducing device protocol violations

● How do we build drivers today?

● TypeState programming

● Our System

● Evaluation & Closing Thoughts

Implementation with TockOS

21

UARTE Temp. Radio USART RNG

22

What’s the catch…

● Code size?
● Developer effort?
● Runtime performance?

Our system adds no code size overhead!

23

Code size of total kernel binary image for a baseline kernel image and kernel
integrating our system into drivers.

MacroBenchmark Performance (in CPU cycles).

Our system adds negligible
runtime overheads.

24

Our system adds some developer overheads

25

(improving the usability is ongoing!)

Case Study – NRF52 IEEE802.15.4 Driver

26

July 2023

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

3 possible HW “shortcuts” to enable faster radio TX

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

3 possible HW “shortcuts” to enable faster radio TX

Unable to get all 3 working (~2 weeks of development)

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our
system into 15.4

driver

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our
system into 15.4

driver

● Updated our state machine in DSL to use all 3 TX HW shortcuts

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our
system into 15.4

driver

● Updated our state machine in DSL to use all 3 TX HW shortcuts

● Compiler identifies sections of driver that must be updated (errors)

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our
system into 15.4

driver

● Updated our state machine in DSL to use all 3 TX HW shortcuts

● Compiler identifies sections of driver that must be updated (errors)

Updated and working driver in ~2 hours!

26

Case Study – NRF52 IEEE802.15.4 Driver

July 2023 August 2023

Add SW ACKs to
radio driver

Unable to get all 3 shortcuts working (~2 weeks of development)

March 2025

Integrate our
system into 15.4

driver

● Updated our state machine in DSL to use all 3 TX HW shortcuts

● Compiler identifies sections of driver that must be updated (errors)

Updated and working driver in ~2 hours!

50% decrease in driver interrupts; 8% runtime improvement

26

Our system statically prevents device protocol
violations using typestates.

Imposes minimal to no code size and runtime overheads.

27

Crate coming soon!
(will be a counterpart to tock-registers)

