
Tock Goes Multicore
Gongqi Huang, Princeton

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task
‣ Performance isolation

– Radio/BLE stack

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task
‣ Performance isolation

– Radio/BLE stack
‣ Security

– Close µ-arch side channels

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task
‣ Performance isolation

– Radio/BLE stack
‣ Security

– Close µ-arch side channels
• Utilizing multiple CPU cores for a specific task

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task
‣ Performance isolation

– Radio/BLE stack
‣ Security

– Close µ-arch side channels
• Utilizing multiple CPU cores for a specific task

‣ Performance boost with hardware parallelism¹

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2

2 / 19

https://www.raspberrypi.com/products/raspberry-pi-pico-2

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs Have Various Architectures

3 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs Have Various Architectures

• Homogeneous (RP2350) or heterogenous (CC26x2) CPU cores
‣ Different ISAs

3 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs Have Various Architectures

• Homogeneous (RP2350) or heterogenous (CC26x2) CPU cores
‣ Different ISAs

• Sharing all memory (RP2350) or part of memory (nRF5340)
‣ A radio core can have a private memory region

3 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Multicore MCUs Have Various Architectures

• Homogeneous (RP2350) or heterogenous (CC26x2) CPU cores
‣ Different ISAs

• Sharing all memory (RP2350) or part of memory (nRF5340)
‣ A radio core can have a private memory region

• Sharing all (RP2350) or part of peripherals (nRF5340)

3 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Tock is Not Multi-Core Ready

4 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Tock is Not Multi-Core Ready

• Tock is a single-core OS

4 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Tock is Not Multi-Core Ready

• Tock is a single-core OS

• The single-core assumption manifests in many of Tock’s design

4 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Tock is Not Multi-Core Ready

• Tock is a single-core OS

• The single-core assumption manifests in many of Tock’s design
‣ Use of interior mutability
‣ Single-threaded asynchronous drivers
‣ …

4 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #1: Run Tock on Multi-Core Platforms

• Utilize other CPU cores

5 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #1: Run Tock on Multi-Core Platforms

• Utilize other CPU cores
‣ Performance

5 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #1: Run Tock on Multi-Core Platforms

• Utilize other CPU cores
‣ Performance
‣ Security

– Capsules are fully trusted to maintain liveness of the system
– Not necessary in a multi-core setting

5 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #2: Retain Tock’s Existing Benefits

6 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #2: Retain Tock’s Existing Benefits

• Avoiding deadlocks and contention
‣ No mutex for synchronization

6 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #2: Retain Tock’s Existing Benefits

• Avoiding deadlocks and contention
‣ No mutex for synchronization

• Predictable resource utilization
‣ No dynamic allocation

6 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #2: Retain Tock’s Existing Benefits

• Avoiding deadlocks and contention
‣ No mutex for synchronization

• Predictable resource utilization
‣ No dynamic allocation

• Isolation between process, capsules, and kernel
‣ Maintain the soundness of Rust

6 / 19

Tock Goes Multicore

Gongqi Huang, Princeton

Goal #2: Retain Tock’s Existing Benefits

• Avoiding deadlocks and contention
‣ No mutex for synchronization

• Predictable resource utilization
‣ No dynamic allocation

• Isolation between process, capsules, and kernel
‣ Maintain the soundness of Rust

• Easy-to-write device drivers
‣ No concurrent state

6 / 19

Multikernel Tock

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables
‣ BYOB Communication

– Bring-Your-Own-Buffer

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables
‣ BYOB Communication

– Bring-Your-Own-Buffer
‣ Peripheral sharing w/ RPCs

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables
‣ BYOB Communication

– Bring-Your-Own-Buffer
‣ Peripheral sharing w/ RPCs
‣ Raw peripheral sharing

8 / 19

Multikernel Tock

Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables
‣ BYOB Communication

– Bring-Your-Own-Buffer
‣ Peripheral sharing w/ RPCs
‣ Raw peripheral sharing

Runs on
• QEMU RISC-V Dual-Core Configuration
• Custom Dual-Core VexRiscv LiteX SoC

8 / 19

Multikernel Tock

Teleporting Ownership with Care

1 pub trait Portal<'a, T: Send> { Rust
… …
3 fn teleport(
4 &self,
5 traveler: &'static mut T,
6) -> Result<(), (ErrorCode, &'static mut T)>; }

9 / 19

Multikernel Tock

Teleporting Ownership with Care

1 pub trait Portal<'a, T: Send> { Rust
… …
3 fn teleport(
4 &self,
5 traveler: &'static mut T,
6) -> Result<(), (ErrorCode, &'static mut T)>; }

1. Traveler must
implement Send

10 / 19

Multikernel Tock

Teleporting Ownership with Care

1 pub trait Portal<'a, T: Send> { Rust
… …
3 fn teleport(
4 &self,
5 traveler: &'static mut T,
6) -> Result<(), (ErrorCode, &'static mut T)>; }

1. Traveler must
implement Send

2. &mut T is Send
when T: Send

11 / 19

Multikernel Tock

Teleporting Ownership with Care

1 pub trait Portal<'a, T: Send> { Rust
… …
3 fn teleport(
4 &self,
5 traveler: &'static mut T,
6) -> Result<(), (ErrorCode, &'static mut T)>; }

1. Traveler must
implement Send

2. &mut T is Send
when T: Send

3. A Tock instance is a
'static “thread”

12 / 19

Multikernel Tock

Teleporting Ownership with Care

• Receiving the traveler back through callbacks

13 / 19

Multikernel Tock

Teleporting Ownership with Care

• Receiving the traveler back through callbacks

1 pub trait Portal<'a, T: Send> { Rust

2
 fn set_portal_client(&self, client: &'a dyn

PortalClient<T>);
… …

1 pub trait PortalClient<T: Send> { Rust
2 fn teleported(
3 &self,
4 traveler: &'static mut T,
5 rcode: Result<(), ErrorCode>,); }

13 / 19

Multikernel Tock

Example: Sharing UART Through RPCs

VirtualUart

PortalUart MuxPortal HWPortal

UartServer DemuxPortal HWPortal

VirtualUart

Tock Instance 0

Tock Instance 1

impl Uart

impl Portal

impl Portal
with unsafe

14 / 19

Multikernel Tock

Sharing Raw Peripherals

• Portal permits transferring ownership of a raw device
‣ E.g., Memory-mapped controller

15 / 19

Multikernel Tock

Sharing Raw Peripherals

• Portal permits transferring ownership of a raw device
‣ E.g., Memory-mapped controller

• Problem: when it is safe to transfer?
‣ E.g., UART in the middle of a transmission
‣ Currently unsupported :*(

15 / 19

Multikernel Tock

Building Multikernel Tock

16 / 19

Multikernel Tock

Building Multikernel Tock

• Build each kernel instance
separately

16 / 19

Multikernel Tock

Building Multikernel Tock

• Build each kernel instance
separately

• Resolved shared symbols
‣ Hardware portals

communicate through
shared memory

16 / 19

Multikernel Tock

Building Multikernel Tock

• Build each kernel instance
separately

• Resolved shared symbols
‣ Hardware portals

communicate through
shared memory

• Prepare the final image
(board-dependent)

16 / 19

Multikernel Tock

Booting

17 / 19

Multikernel Tock

Booting

• Each kernel instance is responsible for initializing their own memory

17 / 19

Multikernel Tock

Booting

• Each kernel instance is responsible for initializing their own memory
‣ Instance 0 is responsible for the shared memory

17 / 19

Multikernel Tock

Booting

• Each kernel instance is responsible for initializing their own memory
‣ Instance 0 is responsible for the shared memory

• Portals are available iff all instances are ready
‣ A (one and only) spin lock is used

17 / 19

Multikernel Tock

Future Work

• Safely sharing physical devices
‣ When it is OK to move a device?

• Process Migration?

18 / 19

Questions?

	Tock Goes Multicore Gongqi Huang, Princeton
	Multicore MCUs are Useful
	Multicore MCUs Have Various Architectures
	Tock is Not Multi-Core Ready
	Goal #1: Run Tock on Multi-Core Platforms
	Goal #2: Retain Tock's Existing Benefits

	Multikernel Tock
	Architecture
	Teleporting Ownership with Care
	Example: Sharing UART Through RPCs
	Sharing Raw Peripherals
	Building Multikernel Tock
	Booting
	Future Work

	Questions?

