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Multicore MCUs are Useful

Raspberry Pi Pico 2¹

• Dedicating a CPU core for a specific task
‣ Performance isolation

– Radio/BLE stack
‣ Security

– Close µ-arch side channels
• Utilizing multiple CPU cores for a specific task

‣ Performance boost with hardware parallelism¹

¹https://www.raspberrypi.com/products/raspberry-pi-pico-2
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Tock is Not Multi-Core Ready

• Tock is a single-core OS

• The single-core assumption manifests in many of Tock’s design
‣ Use of interior mutability
‣ Single-threaded asynchronous drivers
‣ …
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Goal #1: Run Tock on Multi-Core Platforms

• Utilize other CPU cores
‣ Performance
‣ Security

– Capsules are fully trusted to maintain liveness of the system
– Not necessary in a multi-core setting
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Goal #2: Retain Tock’s Existing Benefits

• Avoiding deadlocks and contention
‣ No mutex for synchronization

• Predictable resource utilization
‣ No dynamic allocation

• Isolation between process, capsules, and kernel
‣ Maintain the soundness of Rust

• Easy-to-write device drivers
‣ No concurrent state
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Architecture

Tock
instance
#0

Tock
instance
#1

Ownership
Moving

• Each instance manages an
exclusive set of peripherals
‣ Retain all Tock’s benefits

• Ownership moving enables
‣ BYOB Communication

– Bring-Your-Own-Buffer
‣ Peripheral sharing w/ RPCs
‣ Raw peripheral sharing

Runs on
• QEMU RISC-V Dual-Core Configuration
• Custom Dual-Core VexRiscv LiteX SoC
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1 pub trait Portal<'a, T: Send> { Rust
… …
3     fn teleport(
4         &self,
5         traveler: &'static mut T,
6     ) -> Result<(), (ErrorCode, &'static mut T)>; }

1. Traveler must
implement Send

2. &mut T is Send
when T: Send

3. A Tock instance is a
'static “thread”
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Teleporting Ownership with Care

• Receiving the traveler back through callbacks

1 pub trait Portal<'a, T: Send> { Rust

2
    fn set_portal_client(&self, client: &'a dyn

PortalClient<T>);
… …

1 pub trait PortalClient<T: Send> { Rust
2     fn teleported(
3         &self,
4         traveler: &'static mut T,
5         rcode: Result<(), ErrorCode>, ); }
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Example: Sharing UART Through RPCs

VirtualUart

PortalUart MuxPortal HWPortal

UartServer DemuxPortal HWPortal

VirtualUart

Tock Instance 0

Tock Instance 1

impl Uart

impl Portal

impl Portal
with unsafe
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Multikernel Tock

Sharing Raw Peripherals

• Portal permits transferring ownership of a raw device
‣ E.g., Memory-mapped controller

• Problem: when it is safe to transfer?
‣ E.g., UART in the middle of a transmission
‣ Currently unsupported :*(
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Building Multikernel Tock

• Build each kernel instance
separately

• Resolved shared symbols
‣ Hardware portals

communicate through
shared memory

• Prepare the final image
(board-dependent)
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Multikernel Tock

Booting

• Each kernel instance is responsible for initializing their own memory
‣ Instance 0 is responsible for the shared memory

• Portals are available iff all instances are ready
‣ A (one and only) spin lock is used
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Multikernel Tock

Future Work

• Safely sharing physical devices
‣ When it is OK to move a device?

• Process Migration?

18 / 19
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