
Enabling the usage of
embedded-hal-async
based drivers in the Tock

kernel
Alexandru Radovici

Motivation

• Tock is manually asynchronous
• The Embedded Rust community is used to using
async/.await

• There are 269 crates using the embedded-hal-async
• embedded-hal is used by 1343 crates 🤔

Requirements

• Implementation of an executor
• API for drivers to define async blocks
• Implementation of the embedded-hal-async traits using
Tock’s infrastructure

• Use only static allocation (no Box / BoxedFuture)
• No external dependencies (except embedded-hal-async)
• Use stable Rust
• No (unnecessary) unsafe code

Architecture

•kernel-async crate
• Has one external
dependency,
embedded-hal-asy
nc

• Provides the
implementation of the
embedded-hal-asy
nc traits

• DelayNs

AsyncDriver trait

• Implemented by
drivers

• Provides access
to driver data

• Has to be
‘static

•run returns the
async fn or
block

Executor struct and Runner trait

• Holds and executes the
Future

• Drivers receive a
reference the
Executor

• Circular type due to the
generic argument

• Drivers actually receive
a dyn Runner

Async Hello World

• Prints Hello
• Waits for 1s
• Prints awaited

In-driver usage

• Drivers can perform
one single action at a
time

• This is what most of
the Tock drivers do

Instantiation

• This is in the board
crate (usually in
main.rs)

Async API

• We want to be compatible with embedded-hal-async
• We must provide implementations for at least for

• DelayNs
• SPI
• I2C

Async API

•embedded-hal-async
traits use &mut self

• Tock uses &self
• We need to split the API
driver

• Delay – Tock native driver
• DelayInstance – provides

the embedded-hal-async
API

Example Implementation
Delay
Tock API

DelayInstance
embedded-hal-async API

Limitations

• The implementation of AsyncDriver requires the
impl_trait_in_assoc_type feature

• We have to name the impl Future<Output=()>
• Drivers perform one single async action

Future Work

• Try to use the embassy-rs example and build it with stable
Rust.

• Allow drivers to perform multiple actions
• Understand how to load existing drivers from crates.io

