
Tock on Armv8-M

architecture + Wi-Fi

Darius Andrei Jipa - darius.jipa@oxidos.io

Irina Nita - irina.nita@oxidos.io

mailto:darius.jipa@oxidos.io
mailto:irina.nita@oxidos.io

Agenda

● Motivation for an Armv8-M port

● Porting Tock OS to the Raspberry Pi Pico 2

● Pico 2 Metadata Header

● Armv7-M vs Armv8-M MPU

● Designing the Armv8-M MPU driver

● WiFi

Motivation for an Armv8-M port

● Built-in support for Armv6-M and Armv7-M

● Next milestone: Armv8-M

○ Security additions:

■ TrustZone: hardware-enforced secure vs. non-secure partitions

■ Updated Memory Protection Unit (MPU): fine-grained region

controls

○ Rapidly gaining traction

■ Raspberry Pi Pico RP2350: Dual-core Cortex-M33

■ NXP LPC5500 series: Cortex-M33 MCUs already shipping in volume

Porting Tock OS to the Raspberry Pi Pico 2

● Why Pico 2?

○ The Pico 2 has a dual-core Cortex-M33 (RP2350)

○ Cheap (from $5)

● What is implemented

○ Core boot sequence & runtime setup

○ “Everyday” peripherals: UART, GPIO, Timers, SPI, I²C

● Key challenges

○ RP2350’s mandatory metadata block at flash start

○ Rewriting MPU support for Armv8-M

Pico 2 Metadata Header

Armv7-M vs Armv8-M MPU

● Region shape

○ v7-M = power-of-two size, base

aligned to size

○ v8-M = base/limit model; start &

end 32-byte aligned; any size

● Overlap

○ v7-M allows overlaps (higher

region number wins)

○ v8-M disallows overlaps

● Attributes model

○ v7-M sets attributes in RASR

○ v8-M uses AttrIndx →

MAIR0/MAIR1 entries

● Subregions

○ v7-M has 8 subregions (SRD) per

region

○ v8-M has no subregions

Designing the Armv8-M MPU Driver

● Add the Armv8-M MPU registers to the code and make a struct over them

● Implement the MPU trait over said struct

● Write the memory regions calculations leveraging the Armv8-M MPU

flexibility

Tock and Wi-Fi

● Wi-Fi was a long awaited feature for Tock Networking

● Support for Ethernet already available, Wi-Fi was the next logical step

● Work has started on introducing a Wi-Fi capsule

Raspberry Pi Pico W and the CYW43439 chip

● Raspberry Pi Pico W adds on-board single-band 2.4GHz wireless interfaces

(802.11n) using the Infineon CYW43439

● The communication between the RP2040 chip and the CYW43439 chip is

done through gSPI

gSPI support

The gSPI protocol

CYW43439 datasheet

The PIO solution

● RP2040 introduces the PIO (Programmable Input/Output) peripheral

● It consists of 2 blocks with 4 state machines each that function independent

of the CPU

● Programs are written with pioasm which is an assembly-like language

● Using PIO, the gSPI is implemented and it works like a separate peripheral

out x, 32 side 0

out y, 32 side 0

set pindirs, 1 side 0

.wrap_target

out pins, 1 side 0

jmp x--, 3 side 1

set pindirs, 0 side 0

nop side 0

in pins, 1 side 1

jmp y--, 7 side 0

wait 1 pin, 0 side 0

irq nowait 0 side 0

.wrap

The gSPI PIO program

CYW4343x driver

CYW4343x bus

● Bus implementations sit on top of low-level protocols (SPI, SDIO) HIL

implementations

● The HILs are not enough for defining a bus

○ Register configuration and command formats are different per protocol

(but specific to the CYW4343x chip)

○ Inner state machines differ

● Chip-agnostic, but not protocol agnostic

CYW4343x bus

● Handle configuration and initialisation

● Provide read/write methods for:

○ Bus function, for accessing registers (mostly protocol-dependent)

○ Backplane function (interfacing with the inner SoC’s address space, e.g.

writing the firmware)

○ WLAN function (data packets)

CYW4343x driver

● Sits on top of the generic CYW4343x bus

● Handles initialisation, including writing the firmware

● Constructs and parses Cypress headers over the bus WLAN function packets:

○ SPDCM header for sequencing packets

■ BDC header for data (Ethernet packets) and events

■ CDC header for control packets (IOCTL/IOVAR)

CYW4343x driver

● IOCTLs are used in configuring the WiFi chip

● Example of IOVAR packet:

WiFi capsule

WiFi capsule

● Initialising

● Network scanning with asynchronous updates

● Access point mode (AP)

● Station mode (STA)

Small bumps

● Proprietary firmware from Infineon

○ How do we include blobs in the Tock ecosystem?

● The first working iteration

○ Was based on a WiFi HIL implemented at chip driver level

○ For multiple chip support it would have required duplicating code

○ A lot of unnecessary unsafe code

Future plans for Wi-Fi

● Add drivers for the Infineon CYW4343W chip

○ Tock has code for a board containing said chip (CY8CPROTO-062-

4343W)

○ It communicates with the CPU through the SDIO (Secure Digital Input

Output)

Questions time!

Thank you for your attention!

	Slide 1: Tock on Armv8-M architecture + Wi-Fi
	Slide 2: Agenda
	Slide 3: Motivation for an Armv8-M port
	Slide 4: Porting Tock OS to the Raspberry Pi Pico 2
	Slide 5: Pico 2 Metadata Header
	Slide 6: Armv7‑M vs Armv8‑M MPU
	Slide 7: Designing the Armv8‑M MPU Driver
	Slide 8: Tock and Wi-Fi
	Slide 9: Raspberry Pi Pico W and the CYW43439 chip
	Slide 10: gSPI support
	Slide 11: The gSPI protocol
	Slide 12: The PIO solution
	Slide 13: The gSPI PIO program
	Slide 14: CYW4343x driver
	Slide 15: CYW4343x bus
	Slide 16: CYW4343x bus
	Slide 17: CYW4343x driver
	Slide 18: CYW4343x driver
	Slide 19: WiFi capsule
	Slide 20: WiFi capsule 🚧
	Slide 21: Small bumps
	Slide 22: Future plans for Wi-Fi
	Slide 23: Questions time!
	Slide 24: Thank you for your attention!

