
Samir Rashid

TockWorld 8
September 5, 2025

The Time is Right
Retrofitting Formal Verification

on Timers

time is complicated…

2

Overview

1. Formal Timer Model

2. Verification Retrofitting Technique

3

What is Time?

4

5

Tock Book

6

7

8

9

10

This Work

11

Key Idea: Time only depends on now

12

Key Idea: Run-to-Completion

13

Task 1 Task 2

Insight: run-to-completion prevents concurrency issues

Designing Invariants

14

Retrofitting Specification

Specification

Code

15

Invariants

Progress Soonest alarm fires next

1. No Alarms
2. Elapsed Alarms Fire

Preservation All past alarms have fired

3. Interrupt Upper Bound
4. Interrupt Lower Bound

16

1. No Alarms

if no enabled alarms,
then hardware is disarmed

∀ alarms: alarm.enabled ⟹ hardware.disarmed

17

2. Elapsed Alarms Fire

if alarm elapses now,
then alarm fires

∀ alarms: (alarm.fire_time == now) ⟹

alarm.disabled

18

2. Elapsed Alarms Fire

if alarm elapses now, then alarm fires
∀ alarms: (alarm.fire_time == now) ⟹ alarm.disabled

19

��

3. Interrupt Upper Bound

If there is an enabled alarm,
then the fire time is sooner than the fire time of all alarms

∃ alarm: alarm.enabled ⟹
∀ alarms: new_fire_time - prev_fire_time …….……

⩽
alarm.fire_time - prev_fire_time

20

(mod 232)

3. Interrupt Upper Bound

21

4. Interrupt Lower Bound

If there is an enabled alarm,
then fire time equals the fire time of some alarm

∃ alarm: alarm.enabled ⟹
∃ alarm: alarm.fire_time == hardware.fire_time

22

4. Interrupt Lower Bound

23

4. Interrupt Lower Bound

24

Cannot fire sooner than the alarm should fire

Verification Process

25

What are Formal Methods?

Formal verification is the process of using automatic proof procedures

to establish that a computer program will do what it’s supposed to.

26

What is Verus

- verification tool integrated into Rust
- adds special proof-checked syntax

27

Verification Invariants

28

Add Verification State

29

Add Verification State

30

Requires refactoring all code

Interior Mutability

mutable permission still must pass ownership rules

31

Verifier missing features

● Iterators

● Dynamic traits

● Cross-Crate Verification

● Finding bugs in Verus

32

Required changing every line of code

Key Insights

33

Evaluation: Virtual Alarm Code

34

Executable Code 520 32%

Specification Code 598 36%

Proof Code 525 32%

Total 1643 100%

8 weeks

2 weeks

10 weeks

Proof Generalizes
to other virtualizers

35

Takeaways

1. Specification Design
Tock timers always proceed, correctly

2. Verification Method
Retrofit widely used OS Code
Codesigned proof with 2x line of code overhead

36

Any Questions?

