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The Time is Right
Retrofitting Formal Verification

on Timers



time is complicated…
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Overview

1. Formal Timer Model

2. Verification Retrofitting Technique
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What is Time?
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Tock Book
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This Work
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Key Idea: Time only depends on now
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Key Idea: Run-to-Completion
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Task 1 Task 2

Insight: run-to-completion prevents concurrency issues



Designing Invariants
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Retrofitting Specification

Specification

Code
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Invariants

Progress Soonest alarm fires next

1. No Alarms
2. Elapsed Alarms Fire

Preservation All past alarms have fired

3. Interrupt Upper Bound
4. Interrupt Lower Bound 
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1. No Alarms

if no enabled alarms,
then hardware is disarmed

∀ alarms:  alarm.enabled ⟹ hardware.disarmed
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2. Elapsed Alarms Fire

if alarm elapses now,
then alarm fires

∀ alarms:  (alarm.fire_time == now) ⟹

alarm.disabled
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2. Elapsed Alarms Fire

if alarm elapses now, then alarm fires
∀ alarms: (alarm.fire_time == now) ⟹ alarm.disabled
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3. Interrupt Upper Bound 

If there is an enabled alarm,
then the fire time is sooner than the fire time of all alarms

∃ alarm: alarm.enabled ⟹ 
∀ alarms: new_fire_time - prev_fire_time  …….……

⩽
alarm.fire_time - prev_fire_time
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(mod 232)



3. Interrupt Upper Bound 
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4. Interrupt Lower Bound 

If there is an enabled alarm,
then fire time equals the fire time of some alarm

∃ alarm: alarm.enabled ⟹ 
∃ alarm: alarm.fire_time == hardware.fire_time
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4. Interrupt Lower Bound 
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4. Interrupt Lower Bound 
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Cannot fire sooner than the alarm should fire



Verification Process
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What are Formal Methods?

Formal verification is the process of using automatic proof procedures

to establish that a computer program will do what it’s supposed to.
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What is Verus

- verification tool integrated into Rust
- adds special proof-checked syntax
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Verification Invariants
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Add Verification State
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Add Verification State
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Requires refactoring all code



Interior Mutability

mutable permission still must pass ownership rules
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Verifier missing features

● Iterators

● Dynamic traits

● Cross-Crate Verification

● Finding bugs in Verus
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Required changing every line of code



Key Insights
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Evaluation: Virtual Alarm Code
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Executable Code 520 32%

Specification Code 598 36%

Proof Code 525 32%

Total 1643 100%

8 weeks

2 weeks

10 weeks



Proof Generalizes
to other virtualizers
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Takeaways

1. Specification Design
Tock timers always proceed, correctly

2. Verification Method
Retrofit widely used OS Code
Codesigned proof with 2x line of code overhead
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Any Questions?


