Core WG

Charter: https://github.com/tock/tock/blob/master/doc/wg/core/README.md

TockWorld 7 | June 2024

https://github.com/tock/tock/blob/master/doc/wg/core/README.md

Goals

The goals of the Tock Core Working Group are to:

Shepherd Tock project.

Define and communicate project direction.

Establish WGs and delegate responsibilities.

Ensure WGs are accountable to their responsibilities

Coordinate decisions that affect more than one working group.

Facilitate communication and consensus among WGs.
Coordinate project-wide changes to teams, structures, or
processes.

Members:

Hudson Ayers,

Brad Campbell
Branden Ghena
Philip Levis

Amit Levy (Chair)
Pat Pannuto
Alexandru Radovici
Leon Schuermann
Johnathan Van Why

New Working Groups

e 2023-08-11 Network working group
2024-02-02 Documentation

Blocking 1/0O (YieldForWait)

[RFC] Yield-WaitFor syscall #3577

JSRV ISl alevy merged 30 commits into master from yeild-for (0Jlastweek

) Conversation 100 -o- Commits 30 Fl Checks 17 Files changed 8
(/_\
= 2) ppannuto commented on Jul 28, 2023 - edited by alevy ~ Member

(
\

Pull Request Overview

Following the discussion at TockWorldsé, this describes the proposed Yield-WaitFor and provides a (untested) rough
implementation of how the kernel could easily implement it.

For ease of viewing, this draft PR edits TRD 104 directly so it can be seen as a diff. A final PR would follow the proper, full
TRD process.

The primary motivation to move this functionality from a userspace yield_for into a specialized system call is to simplify
correctness for userspace applications. Userspace upcall handlers do not have to worry about reentrancy if the kernel
guarantees that exactly one and only one specific one of userspace's choosing will be called. It becomes an opt-in
synchronous API for userspace without reducing the fundamental asynchronous design of Tock.

Testing Strategy

P SN | | RS S SIS

S 't a 't 1 C mu 't Replace static muts with new CoreLocal construct #3945

JERIEY @ alevy wants to merge 9 commits into tock:master from alevy:dev/corelocal (O3

tion 49 -o- Commits 9 E) Checks 11 Files changed 23

Shared references of mutable static warnings #3841

Bl 4tasks = valexandru opened this issue on Feb 9 - 8 comments - May be fixed by #3945

¢ commented on Mar 31 « edited + Member s+«

Request Overview

pull request fixes #3841 by replacing most global static mut throughout the kernel, chips, capsules, and board

é valexandru commented on Feb 9 « edited by bradjc ~ Contributor) «++ :s with a new construct called CoreLocal .
:Local is similar in principle to Rust std's Localkey (obtained from the thread_local! macro). It allows access to its
While compiling tock with the latest nightly version of rust, nightly-2624-02-68 , I encounter 25 warnings regarding the nally stored data within a closure passed to with , which obtains a temporary shared reference. It is marked sync ,
usage of shared references of mutable static in folders such as arch/, kernel/, chips/ and boards/ as it can be seen xr the assumption that it is accessed in a thread-safe way---e.g. one copy per CPU core, as the name implies---allowing
bellow: be stored in a global (non-mut) static.

Jvia

warning: shared reference o mutabe static 1s ascoras - StOP@aAP changes to treatment of static mut to get around compile

--> kernel/src/deferred_call.rs:145:28 ?
' g

let ctr = unsafe { &CTR }; warnings. #3965
AAMMA shared reference ¢

145 |
: ISV bradjc merged 6 commits into tock:master from alevy:bug/statimut-stopgap (CJon Apr17
= note: for more information, see issue #114447 <htt

= note: reference of mutable static is a hard error

note: mutable statics can be written to by multipl) Conversation 11 -0- Commits 6 EI/ Checks 11
= note: “#[warn(static_mut_ref)]” on by default

help: shared references are dangerous since if there's & ﬂ

Files changed 109

|
145 | let ctr = unsafe { addr_of!(CTR) };

alevy commented on Apr 16 Member = «++ Reviewers

. ' bradjc
Pull Request Overview
If Tunderstand correctly, for the moment this is just a warning,

This change is a_stopgap_ pending a permanent, safe solution, sketched in #3945. Assignees
We can't currently update Rust compiler versions due deprecation of creating references from &'static mut s. This @ brghena
workaround simply replaces those with uses of the addr_of{_mut}! macros as recommended by Rust. This should have
no semantic affect on compiled artifacts. Labels
kernel nrf G

Testing Strategy WG-OpenTitan

Asynchronous Process Loader

Add Asynchronous Process Loader, Split Credential Traits, Make Process
Checking pre-Kernel Loop #3849

ISRV alevy merged 27 commits into master from process-binary (5 on Mar 19

Y Conversation 32 -0 Commits 27 El Checks 21 Files changed 61 +

Q bradjc commented on Feb 13 + edited + Member = +++ Reviewers

‘ Ischuermann

e alevy

@ phil-levis

Pull Request Overview

This PR implements #3828 to add a fully asynchronous SequentialProcessLoaderMachine . This intersects with process
checking, and this PR includes many changes to process checking as well.

Major Changes (and motivation): Assignees
« Add a ProcessBinary type. This is basically the address of flash and footers, as well as the TBF headers. 6 alevy
o Currently, we fully load processes before checking if they have valid credentials. This is inefficient and consumes
resources for processes we never run. With ProcessBinary , we only parse the process binary from flash, but do Labels
not create a Process object. We do all checking on the ProcessBinary instead, and only load into a Process if P p.sig

the process binary is accepted. —

« Remove credential checking from the kernel loop.
o The kernel loop only has a reference to the PROCESSES array. So, for the core kernel to do process checking, the
process must already exist. As noted above, this is problematic. Therefore, this essentially reverts to pre-credential Projects
checking and the kernel just executes all processes it is given. All process checking MUST happen BEFORE a None yet
process is inserted into the PROCESSES array. The kernel assumes that all Process sin PROCESSES should be

avaritad

Significant bug fixes in interrupt handler

arch/cortex-mO0: hard_fault_handler: fix incorrect return to PSP stack
#3826

pSR VIl bradjc merged 2 commits into tock:master from lschuermann:dev/cortexme-hardfault-handler-miscompile (CJon Feb8

Y Conversation 7 -o- Commits 2) Checks 13 Files changed 1

arch/cortex-m: hard_fault_handler: fix incorrect return to PSP stack
Ischuermann commented on Jan 29 #3798

% P VAR bradjc merged 2 commits into 3 from H texm-hardfault-handler-miscompile (0 onJan 29
Pull Request Overview

This pull request is the sibling of #3798 for Cortex-M0 (ARM vém). It fixes a critical bug in the , @ Conversation 25 - Commits 2) Checks 13 Files changed 1

Prior to this fix, it is possible (depending on the compiler) that the hard-fault handler may rett

(the PSP stack), but in privileged handler mode. This effectively and trivially allows an applicatic . I ST G e Member. ** Reviewers

kernel privileges. For a more in-depth description of this issue, see #3798. Pull Request Overview ;bm’lr
brghena

This fixes a critical bug in the ARMy7m hard-fault handler. Prior to this fix, it is possible (depending on the compiler) that
Testi ng Strategy the hard-fault handler may return to an application’s context (the PSP stack), but in privileged handler mode. This effectively
and trivially allows an application to execute arbitrary code at kernel privileges.

& ppannuto
Assignees
Tock's Cortex-M hard-fault handlers are split into a base handler (implemented through a #[naked] function that does not
generate a function prologue / epilogue), and a non-naked _continued function which can contain arbitrary Rust code.
Once the base handler has done sufficient preparations (make stack space for the subsequent handler, in case of a kernel
stack overflow), the handler jumps to the _continued function. This function is expected to only return if the hard-fault
has been caused by unprivileged user-mode code. In this case, the CONTROL register is set to switch to privileged thread O CGEIED
mode, and the link register (LR) is set to exFFFFFFF (return to Thread mode, restoring state from the main stack pointer
MSP). Finally, upon return, the naked handler is supposed to branch to this LR address:

No one—assign yourse

Labels

Projects
None yet
60020edc < RNVCSIXETrHxseBy_7cortexn26hard fault_handler_arm vim>: flu]
Va1, %0
20e50: fole ofos tstw lr, #4 ——
20e78: 46as moveq sp, ra No milestone
20e7a: 000 b8o7 b.w 20eBc < RNVCSIXETrHxse8y_7cortexm3ghard_fault_handler_arm v7m_continued
20e7e: ar70 bx r

Development

Restructure libtock-c

e Core libtock andseparate libtock-sync
e Standardized namespaced functions
e Standardized mapping of system calls to C interfaces

2024 and Beyond

More working groups!

e Userland
e Testing and development infrastructure
e Kernel

Code-size

e Measure
e Inform
e Optimize

