
The Treadmill
Distributed
Hardware
Testbed

TockWorld 7 – June 26, 2024
Leon Schuermann

Tock lacks automated HW testing

● Today: low assurance that a change will not break boards / subsystems

○ HW tests require time + effort

○ No standardized test workflow:
userspace examples, kernel unit tests, kernel integration tests

○ Interactions between hardware peripherals break isolated software
components in subtle ways

● High testing effort for releases

 → Long delay between releases

 → Lots to test, hard to run them, knowledge around tests is lost

Tock supports lots of boards!

Name That Board!

Name That Board!

Name That “Board”!

Tock supports lots of boards

… some niche boards, used by only a few contributors

… some very expensive boards, infeasible to acquire (multiple of)

… some proprietary HW, which we’ll not get our hands on

… some with heavy-weight / hard-to-use toolchains

● Difficulties getting these targets tested, e.g., for releases

● Maintenance- and refactoring-changes get merged without even basic testing

The Treadmill Distributed Hardware Testbed

Goal: A Distributed, Reliable Testbed for Development + CI

● Physically distributed across multiple different sites
○ Research institutions: UVA, UCSD, Princeton, …

○ At companies & downstream users; adding downstream targets into the upstream CI

● Reliable
○ Schedule among set of available boards

○ Retry on different HW in case of hardware failure, network outage, etc.

● Accommodate diverse testing workloads
○ Layer of abstraction: Linux environment with HW access

○ (Optional) access to hardware peripherals / GPIO

● Secure
○ Isolate different test jobs

○ Access control for individual boards (restrict type of workload & user access)

Coordinator

(Scheduler, access
control, …)

DUTTest Host

“Top of Rack”
server running
Supervisor

Test Host
running VM

Current State

● Initial proof of concept working since ~January
○ Targeted Linux containers exclusively
○ Basic architecture seems decent
○ Coordinator written in Elixir + Phoenix → rewrite it in Rust!

● Rewrite started ~2-3 weeks ago
○ For now, focusing on low-level components & engineering
○ Taking in lessons learned from the first attempt

● Increasing momentum: 2-4 people working on this starting now!

● Interest from other communities as well – Rust Embedded, Embassy

● Hardware deployments “ready” at UCSD, Princeton, UVA(?)

Demo

