
State of Tock
TockWorld 7 | June 2024



A Brief History of Tock



From: Philip Levis
Subject: [helena-project] SenSys poster/demo
To: helena-project@lists.stanford.edu
Date: Wed, 09 Jul 2014 13:15:12 -0700

Each of us has made some interesting progress on a next generation 
embedded platform. Michael @Berkeley has storm (an M4 + RF233), Tom and 
Amit @Stanford have a TinyOS nRF8001 stack and some interesting 
measurements for BLE, Pat and Brad @Michigan have a few Cortex M 
platforms, with the CC2420.

Operating system: what should an operating system for such a device look
like? Can we achieve something like the efficiency and dependability of TinyOS 
without being so difficult to extend and program?

It all started July 2014



In the beginning there was storm.rs

Storm is a 16mm x 26mm (1/2“ by 1”) 
solder on module that combines a 32 bit 
Cortex M4 microcontroller with an 
802.15.4 radio, and 64 Mbit of flash 
memory. This ultra low power module 
exports 80 pins via castellated edges, and 
is designed to be soldered into a larger 
PCB that contains additional sensors or 
actuators.



Reboot with First Tock commit

commit a14379b850bf47e89cd2945226cbf9bcbab5f43f
Author: Amit Aryeh Levy <amit@amitlevy.com>
Date: Tue May 19 15:29:44 2015

Initial commit

Barebones build system and boot to Rust on Storm

mailto:amit@amitlevy.com


Since then…

● 2016: Dynamic userland code loading

● 2017: Tock training at RustConf, first deployment (Signpost)

● 2018: 1.0 release

● 2019: RISC-V support

● 2020: Pluggable scheduler

● 2021: 2.0 release, revised system call interface

● 2022: Subscribe & allow handled by kernel & read-only shared buffers

● 2022: Signed applications

● 2024: Kernel compiles on stable Rust



Project Mission



We believe in

Building embedded systems that

● are safe and secure

● people can program

● are resource efficient

A modest desire, for modest devices, with big 

implications.



Development

Wearables & Medical Devices
Automotive

Payment/ID

Buildings Hardware Root-of-Trust



Tock project accomplishes this through

● Extensible & pluggable core

● Careful and pragmatic use of formal tools
○ Type-safety (Rust)

○ Hardware support for strong isolation

● Co-development with
○ Hardware

○ Language

○ Applications

● Open source collaboration
○ Practitioners

○ Researchers

○ Educators



A Year of Contributions

● Tock
○ 1524 commits, 421 merged PRs
○ 48 contributors, 26 new

● libtock-c
○ 636 commits
○ 18 contributors, 8 new

● libtock-rs
○ 161 commits
○ 13 contributors, 6 new

● tockloader
○ 80 commits
○ 10 contributors, 4 new

● book
○ 166 commits
○ 8 contributors, 2 new



Tock Today

● Deployed on millions of devices
○ Laptops, servers

○ Predominantly for hardware-root-of-trust

● Predominant development on ARM

● Predominant deployments on RISC–V
○ Notable exceptions

■ OpenSK

■ Automotive

■ Sensor networks

■ x86



Project Focus for 2024 and Beyond



Testing, Reliability, Security

● Hardware-based continuous integration

● Test coverage of kernel functionality
● Soundness

● Low-level assembly correctness



Next generation hardware settings

● Integrated settings
○ Non-Execute-in-Place Code Storage
○ Code-size more significant priority
○ Relocation easier! More efficient!
○ Big challenge: reference hardware implementations

● Hardware memory tagging
○ Becoming real!

■ See CHERI talk tomorrow
○ Could have significant influence on efficiency and granularity of isolation

● Multi-Chip Platforms
○ Already technically the case for, e.g., TI MCUs
○ Integrated settings interact with application core via shared memory
○ Not just SMP 



Safe Integration with non-(safe)Rust Code

● Inevitable in practice
○ Cryptographic libraries

○ Vendor provided blobs

● A big problem for type-safety as isolation

● Current story
○ YOLO?

● Looking forward
○ Verified safety

○ Encapsulated Functions

○ User-level services



Still Networking

● Low-power wireless with Thread, LoRa, BLE
○ OpenThread as user-level service

○ Non-kernel networking seems inevitable

○ Need first-class support for sharing with applications

● Automotive networking
○ CAN

○ Ethernet

● USB! USB! USB!



Looking Forward to more Community

● Better supporting downstream users
○ Open communication

○ Tools & documentation

○ Responsive and open upstream

● Better supporting current and potential contributors
○ Tools & documentation

○ Remote on-hardware development

○ Trainings and teaching materials

● Better engagement with related open source
○ Rust, LLVM, RISC-V, OpenTitan, Caliptra

○ Rust embedded ecosystem


