
Discussion:
Userspace Libraries

TockWorld 7 | June 2024



● C
○ Widest support for drivers
○ Fully relocatable (on ARM)

■ Limitation of non-ARM GCC PIC 
○ Primary use cases:

■ “Legacy” application libraries (OpenThread, TPM2, LVGL …)
■ Compatibility

● Rust
○ Limited upstream driver support
○ Basically not relocatable

■ Limitation of LLVM PIC
○ Primary use cases

■ “Greenfield” applications

State of Userspace Libraries



Exciting Developments

● YieldWaitFor system call can better support synchronous I/O
○ Significant quality-of-life improvement for “mostly” async applications

○ Simpler drivers for non-concurrent applications

○ (Modest) code-size improvements for synchronous code (more significant on RISC-V)

● Relocation is “easy” in integrated use-cases (with non-XIP code storage)

● Rust embedded ecosystem can fill gap in high-level code
○ E.g., see embedded-graphics support in libtock-rs



Challenges: Maintenance & Support: libtock-rs

Current maintainers:

● Johnathan Van Why

● Alistair Francis

● (implicitly also Core WG sometimes)

Porting new drivers is challenging

● Kernel-level documentation? Stability

● Complexity of Rust userland?

Building applications and libraries out-of-tree possible but not first-class



Challenges: Maintenance & Support: libtock-c

Current maintainers:

● Implicitly Core WG

Building applications and libraries out-of-tree is hard

● No standard C build system
● Distribute multi-arch object files

Duplication of sync and async interfaces

● Mostly reuse same code, but YieldWaitFor might change that

External stability



Thematic Challenge

Limited open examples that reflect real use cases

We have:

● Test applications

● Sensor network-y applications

● Toy root-of-trust

We don’t have

● “Automotive”

● “Complete” root-of-trust (maybe OpenSK?)



Discussion

● Beefing up maintenance and support for libtock-rs

● Story for libtock-c maintenance

● Automating userland driver generation

● Getting representative applications upstream


